
1619

0022-4715/04/0300-1619/0 © 2004 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 114, Nos. 5/6, March 2004 (© 2004)

A Counter-Example to the Theorem of Hiemer and
Snurnikov

Thierry Monteil1

1 Institut de Mathématiques de Luminy, CNRS UPR 9016, Case 907, 163 Avenue de Luminy,
13288 Marseille cedex 09, France; e-mail: monteil@iml.univ-mrs.fr

Received July 7, 2003; accepted October 23, 2003

A planar polygonal billiard P is said to have the finite blocking property if for
every pair (O, A) of points in P there exists a finite number of ‘‘blocking’’
points B1,..., Bn such that every billiard trajectory from O to A meets one of
the Bi’s. As a counter-example to a theorem of Hiemer and Snurnikov, we con-
struct a family of rational billiards that lack the finite blocking property.
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1. INTRODUCTION

A planar polygonal billiard P is said to have the finite blocking property if
for every pair (O, A) of points in P there exists a finite number of ‘‘block-
ing’’ points B1,..., Bn (different from O and A) such that every billiard
trajectory from O to A meets one of the Bi’s.

In ref. 1, Hiemer and Snurnikov tried to prove that any rational
polygonal billiard has the finite blocking property. The aim of this paper
is to construct a family of rational billiards that lack the finite blocking
property.

2. THE COUNTER-EXAMPLE

Let a be a positive irrational number and Pa be the polygon drawn in
Fig. 1 (L1 and L2 can be chosen arbitrarily, greater than 1).



Fig. 1. The polygon Pa.

Let (pn, qn)n ¥ N be a sequence in Ng2 such that:

• qn is strictly increasing

• |pn − qna| < 1.

For example, we can take qn=n+1 and pn=[qna].
For n ¥ N, let cn be the billiard trajectory starting from O to A with

slope

1
pn+qna

=
1

2qna+ln
=

1
2pn − ln

where ln=pn − qna ¥ ] − 1, 1[.
So, we can check (with the classical unfolding procedure shown in

Fig. 2) that cn hits qn walls, passes through (ln, 1), hits pn walls and then
passes through A(0, 2).

The fact that ln ¥ ] − 1, 1[ enables us to avoid the banana peel shown
in Fig. 3.

Now, we assume by contradiction that there is a point B(x, y) in Pa

distinct from O and A such that infinitely many cn pass through B. Hence,
there is a subsequence such that for all n in N, c in

passes through B.
There are two cases to consider:
First case: y ¥ ] 0, 1]. By looking at the unfolded version of the

trajectory (Fig. 2), we see that x=e in
y(pin

+qin
a) [mod 2a] where e in

¥

{ − 1, 1} depends on the parity of the number of bounces of c in
from O

to B.
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Fig. 2. The unfolding procedure.

So, there exists a sequence (kn)n ¥ N in Z such that x=
e in

y(pin
+qin

a)+2kin
a.

Taking a further subsequence, we can consider e p i to be constant
with value e.

We have x=ey(pi0
+qi0

a)+2ki0
a=ey(pi1

+qi1
a)+2ki1

a.
Hence, (pi1

− pi0
)+(qi1

− qi0
) a=e2a

y (ki0
− ki1

) ] 0.
So, e2a

y can be written as r+sa where r and s are rational numbers.
Now, if n \ 1, we still have (pin

− pi0
)+(qin

− qi0
) a=(r+sa)(ki0

− kin
).

Fig. 3. The banana peel.
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Because (1, a) is free over Q, we have

• (pin
− pi0

)=r(ki0
− kin

)

• (qin
− qi0

)=s(ki0
− kin

) ] 0 (remember that qn is strictly increasing).

Thus, by dividing,

r
s
=

pin
− pi0

qin
− qi0

=
pin

qin

11 −
pi0

pin

21 1

1 −
qi0
qin

2
Łn Q .

a ¥ R0Q

leading to a contradiction.
For the second case, if y ¥ [1, 2[, it is exactly the same (take the point

A(0, 2) as the origin and reverse Fig. 2).
Thus, the billiard Pa lacks the finite blocking property.

3. CONCLUSION

In ref. 3, we study Hiemer and Snurnikov’s proof: it works for ratio-
nal billiards with discrete translation group (such billiards are called almost
integrable). Then we generalize the notion of finite blocking property to
translation surfaces (see ref. 2 for precise definitions). With an analogous
construction to the one described above, we obtain the following results:

Theorem 1. Let n \ 3 be an integer. The following assertions are
equivalent:

• the regular n-gon has the finite blocking property.

• the right-angled triangle with an angle equal to p/n has the finite
blocking property.

• n ¥ {3, 4, 6}.

Theorem 2. A translation surface that admits cylinder decomposi-
tion of commensurable moduli in two transversal directions has the finite
blocking property if and only if it is a torus branched covering.

Corollary 1. A Veech surface has the finite blocking property if and
only if it is a torus branched covering.

Note that torus branched coverings are the analogue (in the voca-
bulary of translation surfaces) of almost integrable billiards.
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We also provide a local sufficient condition for a translation surface to
fail the finite blocking property: it enables us to give a complete classifica-
tion for the L-shaped surfaces and a density result in the space of transla-
tion surfaces in every genus g \ 2.
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