A Counter-Example to the Theorem of Hiemer and Snurnikov

Thierry Monteil¹

Received July 7, 2003; accepted October 23, 2003

A planar polygonal billiard \mathcal{P} is said to have the finite blocking property if for every pair (O, A) of points in \mathcal{P} there exists a finite number of "blocking" points $B_1,..., B_n$ such that every billiard trajectory from O to A meets one of the B_i 's. As a counter-example to a theorem of Hiemer and Snurnikov, we construct a family of rational billiards that lack the finite blocking property.

KEY WORDS: Rational polygonal billiards; translation surfaces; blocking property.

1. INTRODUCTION

A planar polygonal billiard \mathcal{P} is said to have the finite blocking property if for every pair (O, A) of points in \mathcal{P} there exists a finite number of "blocking" points B_1, \ldots, B_n (different from O and A) such that every billiard trajectory from O to A meets one of the B_i 's.

In ref. 1, Hiemer and Snurnikov tried to prove that any rational polygonal billiard has the finite blocking property. The aim of this paper is to construct a family of rational billiards that lack the finite blocking property.

2. THE COUNTER-EXAMPLE

Let α be a positive irrational number and \mathscr{P}_{α} be the polygon drawn in Fig. 1 (L_1 and L_2 can be chosen arbitrarily, greater than 1).

¹ Institut de Mathématiques de Luminy, CNRS UPR 9016, Case 907, 163 Avenue de Luminy, 13288 Marseille cedex 09, France; e-mail: monteil@iml.univ-mrs.fr

Fig. 1. The polygon \mathscr{P}_{α} .

Let $(p_n, q_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{N}^{*2} such that:

- q_n is strictly increasing
- $|p_n-q_n\alpha| < 1.$

For example, we can take $q_n = n+1$ and $p_n = [q_n \alpha]$.

For $n \in \mathbb{N}$, let γ_n be the billiard trajectory starting from O to A with slope

$$\frac{1}{p_n + q_n \alpha} = \frac{1}{2q_n \alpha + \lambda_n} = \frac{1}{2p_n - \lambda_n}$$

where $\lambda_n = p_n - q_n \alpha \in]-1, 1[.$

So, we can check (with the classical unfolding procedure shown in Fig. 2) that γ_n hits q_n walls, passes through $(\lambda_n, 1)$, hits p_n walls and then passes through A(0, 2).

The fact that $\lambda_n \in]-1, 1[$ enables us to avoid the banana peel shown in Fig. 3.

Now, we assume by contradiction that there is a point B(x, y) in \mathscr{P}_{α} distinct from O and A such that infinitely many γ_n pass through B. Hence, there is a subsequence such that for all n in \mathbb{N} , γ_{i_n} passes through B.

There are two cases to consider:

First case: $y \in [0, 1]$. By looking at the unfolded version of the trajectory (Fig. 2), we see that $x = \varepsilon_{i_n} y(p_{i_n} + q_{i_n} \alpha) \mod 2\alpha$ where $\varepsilon_{i_n} \in \{-1, 1\}$ depends on the parity of the number of bounces of γ_{i_n} from *O* to *B*.

Fig. 2. The unfolding procedure.

So, there exists a sequence $(k_n)_{n \in \mathbb{N}}$ in \mathbb{Z} such that $x = \varepsilon_{i_n} y(p_{i_n} + q_{i_n} \alpha) + 2k_{i_n} \alpha$.

Taking a further subsequence, we can consider $\varepsilon \circ i$ to be constant with value ε .

We have
$$x = \varepsilon y(p_{i_0} + q_{i_0}\alpha) + 2k_{i_0}\alpha = \varepsilon y(p_{i_1} + q_{i_1}\alpha) + 2k_{i_1}\alpha$$
.
Hence, $(p_{i_1} - p_{i_0}) + (q_{i_1} - q_{i_0})\alpha = \frac{\varepsilon 2\alpha}{\nu}(k_{i_0} - k_{i_1}) \neq 0$.

Hence, $(p_{i_1} - p_{i_0}) + (q_{i_1} - q_{i_0}) \alpha = \frac{z\alpha}{y} (k_{i_0} - k_{i_1}) \neq 0$. So, $\frac{z\alpha}{y}$ can be written as $r + s\alpha$ where r and s are rational numbers.

Now, if $n \ge 1$, we still have $(p_{i_n} - p_{i_0}) + (q_{i_n} - q_{i_0}) \alpha = (r + s\alpha)(k_{i_0} - k_{i_n})$.

Fig. 3. The banana peel.

Because $(1, \alpha)$ is free over \mathbb{Q} , we have

(p_{i_n} - p_{i₀}) = r(k_{i₀} - k_{i_n})
(q_{i_n} - q_{i₀}) = s(k_{i₀} - k_{i_n}) ≠ 0 (remember that q_n is strictly increasing).

Thus, by dividing,

$$\frac{r}{s} = \frac{p_{i_n} - p_{i_0}}{q_{i_n} - q_{i_0}} = \frac{p_{i_n}}{q_{i_n}} \left(1 - \frac{p_{i_0}}{p_{i_n}}\right) \left(\frac{1}{1 - \frac{q_{i_0}}{q_{i_n}}}\right) \xrightarrow[n \to \infty]{} \alpha \in \mathbb{R} \setminus \mathbb{Q}$$

leading to a contradiction.

For the second case, if $y \in [1, 2[$, it is exactly the same (take the point A(0, 2) as the origin and reverse Fig. 2).

Thus, the billiard \mathcal{P}_{α} lacks the finite blocking property.

3. CONCLUSION

In ref. 3, we study Hiemer and Snurnikov's proof: it works for rational billiards with discrete translation group (such billiards are called *almost integrable*). Then we generalize the notion of finite blocking property to translation surfaces (see ref. 2 for precise definitions). With an analogous construction to the one described above, we obtain the following results:

Theorem 1. Let $n \ge 3$ be an integer. The following assertions are equivalent:

• the regular *n*-gon has the finite blocking property.

• the right-angled triangle with an angle equal to π/n has the finite blocking property.

• $n \in \{3, 4, 6\}$.

Theorem 2. A translation surface that admits cylinder decomposition of commensurable moduli in two transversal directions has the finite blocking property if and only if it is a torus branched covering.

Corollary 1. A Veech surface has the finite blocking property if and only if it is a torus branched covering.

Note that torus branched coverings are the analogue (in the vocabulary of translation surfaces) of almost integrable billiards. We also provide a local sufficient condition for a translation surface to fail the finite blocking property: it enables us to give a complete classification for the L-shaped surfaces and a density result in the space of translation surfaces in every genus $g \ge 2$.

REFERENCES

- 1. P. Hiemer and V. Snurnikov, Polygonal billiards with small obstacles, J. Stat. Phys. 90:453-466 (1998).
- H. Masur and S. Tabachnikov, Rational billiards and flat structures, *Handbook on Dynamical Systems*, Vol. 1A (North-Holland, Amsterdam, 2002), pp. 1015–1089.
- 3. T. Monteil, On the finite blocking property, preprint.