A Counter-Example to the Theorem of Hiemer and Snurnikov

Thierry Monteil ${ }^{1}$

Received July 7, 2003; accepted October 23, 2003

Abstract

A planar polygonal billiard \mathscr{P} is said to have the finite blocking property if for every pair (O, A) of points in \mathscr{P} there exists a finite number of "blocking" points B_{1}, \ldots, B_{n} such that every billiard trajectory from O to A meets one of the B_{i} 's. As a counter-example to a theorem of Hiemer and Snurnikov, we construct a family of rational billiards that lack the finite blocking property.

KEY WORDS: Rational polygonal billiards; translation surfaces; blocking property.

1. INTRODUCTION

A planar polygonal billiard \mathscr{P} is said to have the finite blocking property if for every pair (O, A) of points in \mathscr{P} there exists a finite number of "blocking" points B_{1}, \ldots, B_{n} (different from O and A) such that every billiard trajectory from O to A meets one of the B_{i} 's.

In ref. 1, Hiemer and Snurnikov tried to prove that any rational polygonal billiard has the finite blocking property. The aim of this paper is to construct a family of rational billiards that lack the finite blocking property.

2. THE COUNTER-EXAMPLE

Let α be a positive irrational number and \mathscr{P}_{α} be the polygon drawn in Fig. 1 (L_{1} and L_{2} can be chosen arbitrarily, greater than 1).

[^0]

Fig. 1. The polygon \mathscr{P}_{α}.
Let $\left(p_{n}, q_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathbb{N}^{* 2}$ such that:

- q_{n} is strictly increasing
- $\left|p_{n}-q_{n} \alpha\right|<1$.

For example, we can take $q_{n}=n+1$ and $p_{n}=\left[q_{n} \alpha\right]$.
For $n \in \mathbb{N}$, let γ_{n} be the billiard trajectory starting from O to A with slope

$$
\frac{1}{p_{n}+q_{n} \alpha}=\frac{1}{2 q_{n} \alpha+\lambda_{n}}=\frac{1}{2 p_{n}-\lambda_{n}}
$$

where $\left.\lambda_{n}=p_{n}-q_{n} \alpha \in\right]-1,1[$.
So, we can check (with the classical unfolding procedure shown in Fig. 2) that γ_{n} hits q_{n} walls, passes through ($\lambda_{n}, 1$), hits p_{n} walls and then passes through $A(0,2)$.

The fact that $\left.\lambda_{n} \in\right]-1,1[$ enables us to avoid the banana peel shown in Fig. 3.

Now, we assume by contradiction that there is a point $B(x, y)$ in \mathscr{P}_{α} distinct from O and A such that infinitely many γ_{n} pass through B. Hence, there is a subsequence such that for all n in $\mathbb{N}, \gamma_{i_{n}}$ passes through B.

There are two cases to consider:
First case: $y \in] 0,1]$. By looking at the unfolded version of the trajectory (Fig. 2), we see that $x=\varepsilon_{i_{n}} y\left(p_{i_{n}}+q_{i_{n}} \alpha\right)[\bmod 2 \alpha]$ where $\varepsilon_{i_{n}} \in$ $\{-1,1\}$ depends on the parity of the number of bounces of $\gamma_{i_{n}}$ from O to B.

Fig. 2. The unfolding procedure.

So, there exists a sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{Z} such that $x=$ $\varepsilon_{i_{n}} y\left(p_{i_{n}}+q_{i_{n}} \alpha\right)+2 k_{i_{n}} \alpha$.

Taking a further subsequence, we can consider $\varepsilon \circ i$ to be constant with value ε.

We have $x=\varepsilon y\left(p_{i_{0}}+q_{i_{0}} \alpha\right)+2 k_{i_{0}} \alpha=\varepsilon y\left(p_{i_{1}}+q_{i_{1}} \alpha\right)+2 k_{i_{1}} \alpha$.
Hence, $\left(p_{i_{1}}-p_{i_{0}}\right)+\left(q_{i_{1}}-q_{i_{0}}\right) \alpha=\frac{\varepsilon 2 \alpha}{y}\left(k_{i_{0}}-k_{i_{1}}\right) \neq 0$.
So, $\frac{\varepsilon 2 \alpha}{y}$ can be written as $r+s \alpha$ where r and s are rational numbers.
Now, if $n \geqslant 1$, we still have $\left(p_{i_{n}}-p_{i_{0}}\right)+\left(q_{i_{n}}-q_{i_{0}}\right) \alpha=(r+s \alpha)\left(k_{i_{0}}-k_{i_{n}}\right)$.

Fig. 3. The banana peel.

Because $(1, \alpha)$ is free over \mathbb{Q}, we have

- $\left(p_{i_{n}}-p_{i_{0}}\right)=r\left(k_{i_{0}}-k_{i_{n}}\right)$
- $\left(q_{i_{n}}-q_{i_{0}}\right)=s\left(k_{i_{0}}-k_{i_{n}}\right) \neq 0$ (remember that q_{n} is strictly increasing).

Thus, by dividing,

$$
\frac{r}{s}=\frac{p_{i_{n}}-p_{i_{0}}}{q_{i_{n}}-q_{i_{0}}}=\frac{p_{i_{n}}}{q_{i_{n}}}\left(1-\frac{p_{i_{0}}}{p_{i_{n}}}\right)\left(\frac{1}{1-\frac{q_{i_{0}}}{q_{i_{n}}}}\right) \underset{n \rightarrow \infty}{ } \alpha \in \mathbb{R} \backslash \mathbb{Q}
$$

leading to a contradiction.
For the second case, if $y \in[1,2[$, it is exactly the same (take the point $A(0,2)$ as the origin and reverse Fig. 2).

Thus, the billiard \mathscr{P}_{α} lacks the finite blocking property.

3. CONCLUSION

In ref. 3, we study Hiemer and Snurnikov's proof: it works for rational billiards with discrete translation group (such billiards are called almost integrable). Then we generalize the notion of finite blocking property to translation surfaces (see ref. 2 for precise definitions). With an analogous construction to the one described above, we obtain the following results:

Theorem 1. Let $n \geqslant 3$ be an integer. The following assertions are equivalent:

- the regular n-gon has the finite blocking property.
- the right-angled triangle with an angle equal to π / n has the finite blocking property.
- $n \in\{3,4,6\}$.

Theorem 2. A translation surface that admits cylinder decomposition of commensurable moduli in two transversal directions has the finite blocking property if and only if it is a torus branched covering.

Corollary 1. A Veech surface has the finite blocking property if and only if it is a torus branched covering.

Note that torus branched coverings are the analogue (in the vocabulary of translation surfaces) of almost integrable billiards.

We also provide a local sufficient condition for a translation surface to fail the finite blocking property: it enables us to give a complete classification for the L-shaped surfaces and a density result in the space of translation surfaces in every genus $g \geqslant 2$.

REFERENCES

1. P. Hiemer and V. Snurnikov, Polygonal billiards with small obstacles, J. Stat. Phys. 90:453-466 (1998).
2. H. Masur and S. Tabachnikov, Rational billiards and flat structures, Handbook on Dynamical Systems, Vol. 1A (North-Holland, Amsterdam, 2002), pp. 1015-1089.
3. T. Monteil, On the finite blocking property, preprint.

[^0]: ${ }^{1}$ Institut de Mathématiques de Luminy, CNRS UPR 9016, Case 907, 163 Avenue de Luminy, 13288 Marseille cedex 09, France; e-mail: monteil@iml.univ-mrs.fr

